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Freezing and orientational order in weakly anisotropic fluids
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A simple theoretical method of studying the effect of weak anisotropy on the freezing of classical fluids is
discussed. Free energy of the solid phase is separated into contributions due to the formation of the regular
lattice and the remaining orientational part. The former is calculated by the density-functional theory, while a
mean-field theory of orientational order is developed for the latter. An application to the freezing of hard
dumbbell fluids yields results in good agreement with simulations.
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Freezing of simple isotropic liquids such as Lenna
Jones fluids is now fairly well-understood, largely due to t
successful application of density-functional theory to t
freezing of the hard-sphere system@1,2#. Ramakrishnan and
Yussouff ~RY! pioneered the early perturbative treatme
@3#, and refinements were made later by various weigh
density approximations@4–6#. Quantitative agreements wit
simulation data have been achieved.

Many of the real molecular systems are modeled by
isotropic potentials. Although many authors have appl
generalizations of the RY-type density-functional theory
the freezing of weakly anisotropic hard dumbbell and sph
oid fluids@7#, satisfactory results have been obtained only
small anisotropies@8#. In particular, the various levels o
nontrivial effects of increasing anisotropy uncovered
simulations, such as orientational ordering of solid phase
coexistence with fluids@9,10# and the appearance of liqui
crystalline phases for higher anisotropies@10#, have not been
captured theoretically. An efficient theoretical method
treat the fluid-solid equilibria of anisotropic systems wou
be of interest not only in the general theories of freezing
molecular fluids, but also in the study of phase behavior
various colloidlike systems@11# and globular protein solu
tions @12#.

In this paper, we describe a method that combines
density-functional theory and a mean-field treatment of o
entational ordering appropriate for studies of the phase
havior of weakly anisotropic model fluids. As an applicati
of the formalism, the freezing transitions in hard dumbb
fluids are considered. The calculated phase diagram ag
well with existing simulation results.

Although precise sources of difficulties encountered in
extensions of the density-functional theories are curre
unclear, it is likely that the packing effects associated w
the anisotropic interactions in the solid phases are not ea
captured in density-functional approaches based on hom
neous liquid properties.

An alternative, albeit phenomenological, approach
freezing is provided by application of the cell theory@13#.
The free energy of a solid is simply assumed to be the lo
rithm of the ‘‘free volume’’ accessible to a particle confine
inside a cage formed by its nearest neighbors fixed on t
equilibrium positions. Although generally unacceptable a
theory of liquids mainly due to the problem of the commun
entropy @14,15#, a surprisingly good agreement of coexis
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ence densities with simulation data is obtained when app
to the hard-sphere solid@15#. Extensions of the cell theory
have been applied to freezing in hard dumbbell fluids@16#.

It thus appears worthwhile to attempt a systematic dev
opment of a formalism suitable for studies of the effect
anisotropy on freezing, which avoids both the limitations a
technical complexities of the straightforwardly extend
density-functional approach, and thead hoc empirical as-
sumptions of the cell theory.

We consider a classical molecular fluid with potential e
ergy,

V@$r i ,v i%#5
1

2 (
iÞ j

N

v~r i ,v i ,r j ,v j !, ~1!

where$r i ,v i% is the set of molecular center coordinates a
orientations, N is the total number of molecules, an
v(r i ,v i ,r j ,v j ) is the pairwise interaction potential betwee
moleculesi and j. To achieve an effective separation of th
translational and orientational free-energy contributions,
separate the full interaction potential into an isotropic ref
ence part and the anisotropic remainder:

v~r i ,v i ,r j ,v j !5v0~r i j !1v1~r i ,v i ,r j ,v j !, ~2!

where r i j 5ur i2r j u. Equation ~1! is separated correspond
ingly as V@$r i ,v i%#5V0@$r i%#1V1@$r i ,v i%#. The appropri-
ate choice of the isotropic reference potential would dep
on the particular case being considered, but in general wo
have to be made such that the reference fluid closely mim
the homogeneous low-density behavior of the full anis
tropic fluid. The full partition function can be written as

Z5Z0^e
2bV1[ $r i ,v i %]&0 , ~3!

where Z0 is the reference system partition function,b
51/kBT, and the angled brackets in Eq.~3! represent the
average over the probability distribution of the referen
system,

^•••&0[E dNr iP0@$r i%#E dNv i

VN
~••• !, ~4!
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whereV is the total area of angular elements. The trans
tional probability distribution is given by

P0@$r i%#5
e2bV0[ $r i %]

E dNr ie
2bV0[ $r i ] %

. ~5!

For a crystalline solid phase, the translational distribut
is dominated by the small neighborhood in the configu
tional space of the regular lattice structure. The sing
particle density possessing translational long-range o
thus accounts for most of the structural features containe
the full distribution function. A functional form of the single
particle density invariably used in the density-function
theories, and shown to be highly accurate in describing
real solid structures, is the sum of Gaussians centered on
lattice sites. The corresponding distribution function can
written as

P0@$r i%#5~a/p!3N/2 expF2a (
n51

N

~rn2Rn!2G , ~6!

where$Rn% is the set of lattice vectors anda is the Gaussian
width parameter directly related to the Lindemann rat
With Eq. ~6!, the moleculen is localized to the neighborhoo
of the lattice siteRn .

From Eq.~3!, the total free energy per molecule can
written as

f 5 f 01 f v , ~7!

where Nb f 052 ln Z0 and Nb f v52 ln(YN /VN) with the
‘‘orientational partition function’’YN defined as

YN5E dNr iP0@$r i%#E dNv ie
2bV1[ $r i ,v i %] . ~8!

Conventional methods of density-functional theory can
applied to obtain the reference free energy, or the free en
of lattice formation,f 0, and the parametera.

The orientational free energyf v serves as the ‘‘correction
term’’ compensating the total neglect of the orientation
correlations in the isotropic reference system free energyf 0.
To simplify the presentation of the remainder, we takea
.` in Eq. ~6!, upon which we get

YN5E dNv i )
^nm&

Qnm~vn ,vm!, ~9!

where the interactions beyond the nearest-neigh
pairs ^nm& were neglected, and Qnm(vn ,vm)
5exp@2bv1(Rn ,vn ,Rm ,vm)#.

With the translational distribution localized around t
regular lattice sites, a self-consistent mean-field-like form
ism can be used to obtain the orientational free energy
considering the hierarchy of many-particle distributions.
05150
-

n
-
-
er
in

l
e

the
e

.

e
gy

l

or

l-
y

similar approach has been used by Tareeva and Trape
@17# to treat orientational ordering in the solid. It require
however, a nonsingular energy expression, and therefor
not appropriate for systems dominated by hard-core inte
tions.

The n-particle reduced probability distribution function
given by

PN
(n)@$vn%#5

1

YN
E dN2nv i )

^nm&
Qnm~vn ,vm!, ~10!

and the single-particle distribution function for a central si
p0(v0)5PN

(1)@v0#, can be written as

p0~v0!5
1

YN
E )

n
dvnQ0n~v0 ,vn!

3E dN2nc21v i )
^ml&8

Qml~vm ,v l ! ~11a!

5
1

VjE )
n

dvnQ0n~v0 ,vn!PN21
(nc)

@$vn%#.

~11b!

In Eq. ~11a!, the first and second integrations are over t
nearest neighbors of the central site and the rest of the s
respectively, the second product excludes pairs involving
central site, andnc is the coordination number. Equation~10!
was used to get Eq.~11b!, andj5YN

1/N/V5exp(2bfv).
A number of approximations are possible for decoupli

the hierarchy represented by Eq.~11b!. One obvious choice
is to ignore the correlations between the sites and appr
mate the multiparticle distribution as the product of t
single-particle distributions. The other extreme is to igno
the fluctuations instead:

PN21
(nc)

@$vn%#.p1~v1!)
nÞ1

d~vn2v1!, ~12!

where ‘‘1’’ is any one of the coordination sites. A mor
realistic approach would be to take the combination of
two limits based on the classification of the coordinati
sites intoM symmetry-related sublattice groups. Fluctuatio
between sites within a subgroup, and the correlations
tween sites belonging to different groups, are ignored. T
nc-particle distribution function in Eq.~11b! is thus approxi-
mated as

PN21
(nc)

@$vn%#. )
m51

M Fpm~vm1
! )
lÞm1

d~v l2vm1
!G , ~13!

wherepm(vm1
) is the single-particle distribution function o

a site belonging to themth sublattice,m1 is any one of the
sites of themth group, and the second product runs over
rest of the sites within the sublattice group.

With Eq. ~13!, Eq. ~11b! becomes
1-2
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p0~v0!5
1

Vj )
m51

M E dv1pm~v1! )
nPm

Q0n~v0 ,v1!.

~14!

Equation~14! relates the central site distribution function
those of its neighbors. A self-consistent solution can be
tained by assuming a certain parametrized form of the an
lar distribution, and solving Eq.~14! by iterative procedures

The formalism developed above is quite general, a
could be applied to any short-ranged fluids with relative
weak anisotropy. On the other hand, phases without tran
tional order such as liquid crystals would require differe
approaches to Eq.~5!. In the following, we specifically con-
sider the hard dumbbell fluids, whose phase behavior se
to reveal canonical features of general trends observed in
weak anisotropy regime@10,18#. The hard dumbbell fluids
consist of pairs of fused hard spheres with diameters and
bond lengthL. The reduced bond lengthL* 5L/s serves as
the ‘‘anisotropy parameter.’’ With computer simulatio
@8,9#, it has been shown that the fluid freezes into the ori
tationally disordered plastic phase forL* ,0.38, whereas the
orientationally ordered phase coexists with the fluid
larger anisotropies.

We use the simple analytical expression of the h
dumbbell fluid free energy devised by Tildesley and Str
~TS! @21#. The modified weighted density approximatio
~MWDA ! @6# with the generalization proposed by Khein a
Ashcroft @19# was used for the calculation off 0. To closely
approximate the translational free energy of the full syst
by those of the reference, the TS form of the free energy
the direct correlation function of an effective hard-sphe
system were used as inputs to the MWDA. The effect
hard-sphere diameterd was determined by the compressib
ity thermodynamic consistency.

The perturbation potential in Eq.~2! can in fact be re-
placed by the full potential since we have assumed per
localization of molecular centers to lattice sites. For the h
dumbbell potential, the Boltzmann factorQ0n(v0 ,v1) is ei-
ther 0 or 1 depending on whether the two dumbbells ove
or not with given orientations. To solve Eq.~14!, we choose
the following form ofpm(v)[p(v;v̄m):

p~v;v̄m!5A21 exp@b cos2 dum1c cosdfm#, ~15!

where u and f are the angles in the spherical coordina
system,dum5u2 ūm , dfm5f2f̄m , andA is the normal-
ization factor. Nonzero values ofb andc signify the prefer-
ence of the molecular orientation to directions close toūm

and f̄m . A convenient bounded set of orientational-ord
parameters can be defined as

q5^P2~cosdum!&p ,
~16!

z5^cosdfm&p ,

where the angled brackets are the averages overpm(v) and
P2(x)5(3x221)/2. The order parameters are determin
self-consistently by the set of equations obtained from
~14!,
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j5E dv0

4p )
m51

M E dv1p~v1 ;v̄m!Qm~v0 ,v1!,

q5E dv0

4pj
P2~du0! )

m51

M E dv1p~v1 ;v̄m!Qm~v0 ,v1!,

~17!

z5E dv0

4pj
cosdf0 )

m51

M E dv1p~v1 ;v̄m!Qm~v0 ,v1!,

whereQm(v0 ,v1)5)nPmQ0n(v0 ,v1). Equations~17! can
be iterated with an initial guess ofq andz.

FIG. 1. Orientational free energyf v for the fcc and hcp phase
as a function of the reduced densityr* 5rs3@113L* /2
2(L* )3/2# for L* 50.4. Solid and dotted lines are the hcp and f
values, respectively.

FIG. 2. Phase diagram of hard dumbbell fluids. Dots are
coexistence densities calculated. Open circles are the simula
results from Ref.@9#. Solid and dotted lines are guides to the ey
1-3
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For the plastic phase, each molecular centers were
sumed to be in face-centered-cubic~fcc! symmetries. Coor-
dination sites of a central site would consist of three sub
tice groups, andM53 in Eqs. ~17!. Preferred angular
orientations were taken as those of thea-N2 structure@20#.
We assumed that for the ordered phase, molecular center
arranged in the hexagonal-close-packed~hcp! symmetry,
with the preferred orientation along thec direction. The lat-
tice constant ratio was taken as the close-packing value.
of the coordination sites have the same preferred orienta
namely the direction perpendicular to the hexagonal plan
andM51 in Eqs.~17!. Angular integrals in Eqs.~17! were
evaluated by a 30-point Gauss-Legendre quadrature in
dimension. For the fcc solid phase, no appreciable orie
tional ordering intoa-N2 structure was observed in our ca
culations, whereas the order parameter of the hcp phase
found to increase monotonically with density, approachin
near close packing.

The orientational free energyf v as a function of density
for the two phases is shown in Fig. 1. It is seen that
general there exists a switch of stability from the fcc to h
solid as density increases. To calculate the values of the
existence densities, the translational part of the free ene
f 0 should be added along with the ideal part tof v for each of
the lattice symmetries.
ys
s.

.
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The obtained phase diagram is shown in Fig. 2. For l
anisotropy, the dumbbell fluid freezes into the plastic pha
while the fluid coexists with the orientationally ordere
phase at higher bond-length parameters. The triple po
where the fluid, plastic, and the ordered phases coexis
found to be atL* 50.36, in good agreement with simula
tions. The general level of agreement with simulations
similar to that of the hard-sphere limit, except the smallL*
region of the fluid-plastic phase boundaries. ForL* &0.2, the
dumbbells on the fcc lattice do not interact within the pres
approximations for densities near coexistence, andf v50.
The resulting overestimation of the stability of the plas
phase is manifested as the broadening of the coexistenc
gion. In reality, the effect of anisotropic interactions wou
still be felt for these small values ofL* , mainly due to the
finite size of the Lindemann ratio. Equation~14! can be
readily generalized to include translational distribution fun
tions with a nonzero widtha.

The current method could be applied fairly straightfo
wardly to study the phase behavior of the ‘‘soft’’ anisotrop
model fluids. A choice of the isotropic reference system fo
given potential model determines the anisotropic pertur
tion potential, which serves as the input to the mean-fi
theory of orientational order.
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on-
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