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Freezing and orientational order in weakly anisotropic fluids
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A simple theoretical method of studying the effect of weak anisotropy on the freezing of classical fluids is
discussed. Free energy of the solid phase is separated into contributions due to the formation of the regular
lattice and the remaining orientational part. The former is calculated by the density-functional theory, while a
mean-field theory of orientational order is developed for the latter. An application to the freezing of hard
dumbbell fluids yields results in good agreement with simulations.
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Freezing of simple isotropic liquids such as Lennard-ence densities with simulation data is obtained when applied
Jones fluids is now fairly well-understood, largely due to theto the hard-sphere solid5]. Extensions of the cell theory
successful application of density-functional theory to thehave been applied to freezing in hard dumbbell flUjitis].
freezing of the hard-sphere systéf2]. Ramakrishnan and It thus appears worthwhile to attempt a systematic devel-
Yussouff (RY) pioneered the ear|y perturba’[ive treatmentsopment of a formalism suitable for studies of the effect of
[3], and refinements were made later by various weighte@nisotropy on freezing, which avoids both the limitations and
density approximationg4—6]. Quantitative agreements with technical complexities of the straightforwardly extended
simulation data have been achieved. density-functional approach, and tle&l hoc empirical as-

Many of the real molecular systems are modeled by ansumptions of the cell theory.
isotropic potentia's_ A|th0ugh many authors have app“ed We consider a classical molecular fluid with pOtential en-
generalizations of the RY-type density-functional theory to€rgy.
the freezing of weakly anisotropic hard dumbbell and spher-
oid fluids[7], satisfactory results have been obtained only for 1
small anisotropieg8]. In particular, the various levels of VT eitl=5 ; v(fi il 0)), @
nontrivial effects of increasing anisotropy uncovered by

simulations, such as orientational ordering of solid phases ifynere{r, ,w;} is the set of molecular center coordinates and
coexistence with fluid$9,10] and the appearance of liquid grientations, N is the total number of molecules, and
crystalline phases for higher anisotropjes], have not been (., T, ;) is the pairwise interaction potential between
captured theoretically. An efficient theoretical method t0ysleculesi and]. To achieve an effective separation of the
treat the fluid-solid equilibria of anisotropic systems would yansjational and orientational free-energy contributions, we

be of interest not only in the general theories of freezing insenarate the full interaction potential into an isotropic refer-
molecular fluids, but also in the study of phase behavior of,ce part and the anisotropic remainder:

various colloidlike system$l1] and globular protein solu-
tions[12].

In this paper, we describe a method that combines the v(ri,o;,rj,0)=ve(rij) tv(ri,w;,r,o), (2
density-functional theory and a mean-field treatment of ori-
entational ordering appropriate for studies of the phase bgghere ri=|r;—ri|. Equation(1) is separated correspond-
havior of wegkly anisotropic_ model fI_ujds. As an applicationing”y asj\/[{ri swij}]:VO[{ri}]"_Vl[{ri ,w;}]. The appropri-
of the formalism, the freezing transitions in hard dumbbellyie ‘choice of the isotropic reference potential would depend
fluids are cqngldergd. The calculated phase diagram agregs ihe particular case being considered, but in general would
well with existing simulation results. have to be made such that the reference fluid closely mimics

Although precise sources of difficulties encountered in they,o homogeneous low-density behavior of the full aniso-
extensions of the density-functional theories are currentl)fropiC fluid. The full partition function can be written as
unclear, it is likely that the packing effects associated with

the anisotropic interactions in the solid phases are not easily V.
captured in density-functional approaches based on homoge- Z=Zq(e Ailltieill), 3)
neous liquid properties.

An_ alt.ernativ.e, albeit phenqmenological, approach 1q,here Z, is the reference system partition functiog,
freezing is provided by application of the cell thedi3]. =1/kgT, and the angled brackets in E¢B) represent the

The free energy of a SO"‘,j, s simp!y assumed to be the' Iogaé\verage over the probability distribution of the reference
rithm of the “free volume” accessible to a particle confined system

inside a cage formed by its nearest neighbors fixed on their
equilibrium positions. Although generally unacceptable as a

theory of liquids mainly due to the problem of the communal (- ’>OEJ deiPo[{fi}]f
entropy[14,15, a surprisingly good agreement of coexist-
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where(} is the total area of angular elements. The translasimilar approach has been used by Tareeva and Trapezina

tional probability distribution is given by [17] to treat orientational ordering in the solid. It requires,
however, a nonsingular energy expression, and therefore is
e~ AVollril] not appropriate for systems dominated by hard-core interac-
Pol{ritl= : ®  tons.
f dNr,e AVollril} The n-particle reduced probability distribution function is
given by

For a crystalline solid phase, the translational distribution .
is dominated by the small neighborhood in the configura- _
tional space of the regular lattice structure. The single- Pf\,”)[{wn}]:Y—j d" nwi(l_r[n Qnm(@n,0py), (10)
particle density possessing translational long-range order N )
thus accounts for most of the structural features contained i
the full distribution function. A functional form of the single-
particle density invariably used in the density-functional Po
theories, and shown to be highly accurate in describing the
real solid structures, is the sum of Gaussians centered on the Po( o) = ij H dw,Qon( @, wp)
lattice sites. The corresponding distribution function can be Ty N oMo
written as

Ond the single-particle distribution function for a central site,
(w0)=P{[wo], can be written as

N

Xj dV" e o [T Quil@m, o) (11a
Pol{ri}]=(al m)3N? exr{ —azl (rn—Rn)z}, (6)

(mb

1 f (no
=0z | I donQon(wo, @) P [{wn}].
where{R,} is the set of lattice vectors andis the Gaussian Q&) S MmO TN
width parameter directly related to the Lindemann ratio. (11b

With Eq. (6), the moleculen is localized to the neighborhood _ _ _
of the lattice siteR,, . In Eq. (118, the first and second integrations are over the

From Eq.(3), the total free energy per molecule can benearest neighbors of the central site and the rest of the sites,
written as respectively, the second product excludes pairs involving the
central site, and, is the coordination number. Equati¢ho)
f=fo+f,, (7)  was used to get Eq11b), and &= Y/ Q=exp(-pBf,).

A number of approximations are possible for decoupling
where NBfo=—InZ, and NBf,=—In(Yy/QY) with the f[he hi_erarchy representgd by HE4lb). One o_bvious choice _
“orientational partition function”Yy, defined as is to ignore the correlations between the sites and approxi-

mate the multiparticle distribution as the product of the
single-particle distributions. The other extreme is to ignore

YN:J’ dNriPO[{ri}]J AN, e~ AValiri il ®) the fluctuations instead:

(nc) ~ _
Conventional methods of density-functional theory can be Prfal{en}] pl(wl)nl;ll S wn=wy), (12)

applied to obtain the reference free energy, or the free energy

of lattice formation,f, and the parameter. where “1” is any one of the coordination sites. A more
The orientational free enerdy, serves as the “correction realistic approach would be to take the combination of the
term” compensating the total neglect of the orientationalywo |imits based on the classification of the coordination
correlations in the isotropic reference system free enéggy sites intoM symmetry-related sublattice groups. Fluctuations
To simplify the presentation of the remainder, we take petween sites within a subgroup, and the correlations be-

=0 in Eq. (6), upon which we get tween sites belonging to different groups, are ignored. The
n.-particle distribution function in Eq.11b) is thus approxi-
mated as
YN:f deiH Qnm(@n, o), 9
(nm) M

- | PRi{on]=I1 | pm(om) [I 8(wi-wn) | (13

where the interactions beyond the nearest-neighbor m=1 1#my

pairs (nm) were neglected, and Quu(®@,,®m) ) ) _ o _

=exd —Bvi(Ry,®n,Rim,om) 1. wherepm(wml) is the single-particle distribution function of
With the translational distribution localized around the a site belonging to thenth sublatticem, is any one of the

regular lattice sites, a self-consistent mean-field-like formalsites of themth group, and the second product runs over the

ism can be used to obtain the orientational free energy byest of the sites within the sublattice group.

considering the hierarchy of many-particle distributions. A With Eq. (13), Eqg. (11b) becomes

051501-2



FREEZING AND ORIENTATIONAL ORDER IN WEAKLY . .. PHYSICAL REVIEW E63 051501

LM 5.0 . . :
Po(wo) = 0f n!;[l f dwlpm(wl)nl;[m Qon(w@g,®1). - A
(14)

Equation(14) relates the central site distribution function to

those of its neighbors. A self-consistent solution can be ob-
tained by assuming a certain parametrized form of the angu-
lar distribution, and solving Edq14) by iterative procedures.

The formalism developed above is quite general, and r ]
could be applied to any short-ranged fluids with relatively wr .
weak anisotropy. On the other hand, phases without transla- _
tional order such as liquid crystals would require different 0.0 , | , | ,
approaches to Ed5). In the following, we specifically con- 1.0 11 12 13
sider the hard dumbbell fluids, whose phase behavior seems p*
to reveal canonical features of general trends observed in the
weak anisotropy regimgl0,18. The hard dumbbell fluids FIG. 1. Orientational free enerdy, for the fcc and hcp phases
consist of pairs of fused hard spheres with diameteand as a function of the reduced density*=po*[1+3L*/2
bond lengthL. The reduced bond length* =L/ serves as  —(L*)%?2] for L*=0.4. Solid and dotted lines are the hcp and fcc
the “anisotropy parameter.” With computer simulation values, respectively.

[8,9], it has been shown that the fluid freezes into the orien-

tationally disordered plastic phase fof <0.38, whereas the

orientationally ordered phase coexists with the fluid for f H fdwlp (01;0m) Qu(wg, 1),
larger anisotropies.

We use the simple analytical expression of the hard
dumbbell fluid free energy devised by Tildesley and Street dwg _

(TS) [21]. The modified weighted density approximation 4= J P2(56) H J doip(@;;0m) Qm(we, 1),
(MWDA) [6] with the generalization proposed by Khein and m=t 17)
Ashcroft[19] was used for the calculation 6f. To closely

approximate the translational free energy of the full system

by those of the reference, the TS form of the free energy and

the direct correlation function of an effective hard-sphere Z_f Amé 0055¢0H jd“’lp(“’l""m)Qm(wO'“’l)
system were used as inputs to the MWDA. The effective

hard-sphere diameterwas determined by the compressibil-
ity thermodynamic consistency.

The perturbation potential in Ed2) can in fact be re-
placed by the full potential since we have assumed perfect
localization of molecular centers to lattice sites. For the hard 1.4
dumbbell potential, the Boltzmann fact@g,(wq, ) is ei- '
ther O or 1 depending on whether the two dumbbells overlap
or not with given orientations. To solve E{d.4), we choose 1.3 ~

the following form ofpm(w)Ep(w;Em): -
1.2

where Q(wq,w1) =11, mQon(wp,w1). Equations(17) can
be iterated with an initial guess ofandz

T T T T T T

p(w;wm) =A"texgb co §6,+ccosdgy,], (15 plastic solid

where § and ¢ are the angles in the spherical coordinate

system,860,,= 0— 60,,, Sbm=— by, andA is the normal-
ization factor. Nonzero values &f and c signify the pref_er—

ence of the molecular orientation to directions closedjp

and Em. A convenient bounded set of orientational-order
parameters can be defined as 0.9

1.1

p*

1.0

q=(P2(c0s66))p,

2=(C0S6Pm)p

where the angled brackets are the averages pyé®) and

P,(x)=(3x?—1)/2. The order parameters are determined FIG. 2. Phase diagram of hard dumbbell fluids. Dots are the
self-consistently by the set of equations obtained from Eqcoexistence densities calculated. Open circles are the simulation
(14), results from Ref[9]. Solid and dotted lines are guides to the eye.

0.8 L | { { L | ‘
(16) 0.0 0.2 0.4 0.6 0.8

L*

051501-3



HYUNG-JUNE WOO AND XUEYU SONG PHYSICAL REVIEW B3 051501

For the plastic phase, each molecular centers were as- The obtained phase diagram is shown in Fig. 2. For low
sumed to be in face-centered-culficc) symmetries. Coor- anisotropy, the dumbbell fluid freezes into the plastic phase,
dination sites of a central site would consist of three sublatwhile the fluid coexists with the orientationally ordered
tice groups, andM=3 in Egs. (17). Preferred angular phase at higher bond-length parameters. The triple point,
orientations were taken as those of €N, structure[20].  where the fluid, plastic, and the ordered phases coexist, is
We assumed that for the ordered phase, molecular centers gtind to be atL* =0.36, in good agreement with simula-
arranged in the hexagonal-close-packéitp) symmetry, tions. The general level of agreement with simulations is
with the preferred orientation along tleedirection. The lat-  gimilar to that of the hard-sphere limit, except the sl
tice constant ratio was taken as the close-packing value. Apegion of the fluid-plastic phase boundaries. Ebi<0.2, the

S . "Yumbbells on the fcc lattice do not interact within the present
namely the direction perpendicular to the hexagonal plane%lpproximations for densities near coexistence, &pe-0.

andM =1 in Egs.(17). Angular integrals in Eq917) were . S " .
evaluated by a 30-point Gauss-Legendre quadrature in eac-:rhhe resulting overestimation of the stability of the plastic

dimension. For the fcc solid phase, no appreciable orienta[-)hase is manifested as the broadening of the coexistence re-

tional ordering intoa-N, structure was observed in our cal- gion. In reality, the effect of anisotropic interactions would

. e
culations, whereas the order parameter of the hcp phase willl b€ felt for these small values &f*, mainly due to the

found to increase monotonically with density, approaching 1nit¢ size of the Lindemann ratio. Equatidd4) can be
near close packing. readily generalized to include translational distribution func-
The orientational free enerdly, as a function of density tions with a nonzero width.

for the two phases is shown in Fig. 1. It is seen that in The current method could be applied fairly straightfor-
general there exists a switch of stability from the fcc to hcpwardly to study the phase behavior of the “soft” anisotropic
solid as density increases. To calculate the values of the cénodel fluids. A choice of the isotropic reference system for a
existence densities, the translational part of the free energgiven potential model determines the anisotropic perturba-
f, should be added along with the ideal parf tofor each of  tion potential, which serves as the input to the mean-field

the lattice symmetries. theory of orientational order.
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